Monitoring fault zone environments with correlations of earthquake waveforms

نویسندگان

  • Philippe Roux
  • Yehuda Ben-Zion
چکیده

S U M M A R Y We develop a new technique for monitoring temporal changes in fault zone environments based on cross-correlation of earthquake waveforms recorded by pairs of stations. The method is applied to waveforms of∼10 000 earthquakes observed during 100 d around the 1999M 7.1 Duzce mainshock by a station located in the core damage zone of the North Anatolian Fault and a nearby station. To overcome clock problems, the correlation functions are realigned on a dominant peak. Consequently, the analysis focuses on measurements of coherency rather than traveltimes, and is associated with correlation coefficient of groups of events with a reference wavelet. Examination of coherency in different frequency bands reveals clear changes at a narrow band centred around 0.8 Hz. The results show a rapid drop of ∼1–2 per cent of the coherency at the time of the Duzce event followed by gradual recovery with several prominent oscillations over 4 d. The observed changes likely reflect evolution of permeability and fluid motion in the core damage zone of the North Anatolian Fault. Compared to noise correlation processing, our analysis of earthquake waveform correlation (i) benefits from high level of coherencewith short duration recorded signals, (ii) has considerably finer temporal sampling of fault dynamics after mainshocks than is possible with noise correlation, (iii) uses the coherence level to track property variations, which may be more robust than traveltime fluctuations in the coda of noise correlations. Studies utilizing both earthquake and noise waveforms at multiple pairs of stations across fault damage zones can improve significantly the understanding of fault zone processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seismicity of Batubesi Dam at Sorowako Region Based on Earthquake Data and Microtremor Measurement

Batubesi Dam which is located in Sorowako region in the middle part of Sulawesi island had been designed with seismic coefficient about 0.20g. The region constitutes an active earthquake zone with the recurrence frequency and magnitude of the earthquake are relatively high. The region is located on and active fault zone due to lateral fault movement (strike-slip) of Matano fault, Palukoro fault...

متن کامل

Detailed analysis of tsunami waveforms generated by the 1946 Aleutian tsunami earthquake

The 1946 Aleutian earthquake was a typical tsunami earthquake which generated abnormally larger tsunami than expected from its seismic waves. Previously, Johnson and Satake (1997) estimated the fault model of this earthquake using the tsunami waveforms observed at tide gauges. However, they did not model the second pulse of the tsunami at Honolulu although that was much larger than the first pu...

متن کامل

Parkfield Earthquake and their implications

Repeated earthquakes and explosions recorded at the San Andreas fault (SAF) near Parkfield before and after the 2004 M6 Parkfield earthquake show large seismic velocity variations within an approximately 200m-wide zone along the fault to depths of approximately 6 km. The seismic arrays were co-sited in the two experiments and located in the middle of a high-slip part of the surface rupture. Wav...

متن کامل

The SanrikuOki, Japan, Earthquake of December 28, 1994 Mw 7.7 Rupture of a different asperity from a previous earthquake

Fault geometry, depth, and slip distribution of the Sanriku-oki earthquake of December 28, 1994 (Ms 7.5) are estimated from seismic waveforms, geodetic measurements, and tsunami waveforms, and compared with those of the 1968 Tokachi-oki earthquake (Mw 8.2), the most recent large earthquake in the epicentral region. Seismic wave inversions indicate a shallowly dipping thrust type mechanism and t...

متن کامل

Structural concepts for Soltanieh fault zone (NW Iran)

Active deformation in Alborz range is due to N-S convergence between Arabia and Eurasia. This paper provides geomorphic traces of regional deformation in NW Iran in order to characterize active faulting on major faults. Soltanieh and North Zanjan fault systems are involved in convergence boundary extent between South Caspian Basin and Central Iran. Soltanieh and North Zanjan faults are major re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013